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Renewable liquid optics with magneto-electrostatic control

D. Ryutov, A. Toor

Lawrence Livermore National Laboratory, Livermore, CA 94551

Abstract

We suggest a new class of high-flux renewable optics, in particular, for the use at the X-
ray free electron laser, LCLS, which is under discussion now. The size of optical elements
we have in mind is from a fraction of a square centimeter to a few square centimeters. We
suggest that working fluid be pressed through a porous substrate (made, e.g., of  fused
capillaries) to form a film, a few tens to a hundred microns thick. After the passage of an
intense laser pulse, the liquid film is sucked back through the substrate by a reversed
motion of the piston, and formed anew before the next pulse. The working surface of the
film is made flat by capillary forces. We discuss the role of viscous, gravitational, and
capillary forces in the dynamics of the film and show that the properly made film can be
arbitrarily oriented with respect to the gravitational force. This makes the proposed optics
very flexible. We discuss effects of vibrations of the supporting structures on the quality of
optical elements. Limitations on the radiation intensity are formulated. We show how the
shape of the film surface can be controlled by electrostatic and magnetic forces, allowing
one to make parabolic mirrors and reflecting diffraction gratings.



1.  Introduction

We propose a new approach to high power-loads on optics and adaptive optics
based on the use of liquid optical elements (planar and shaped mirrors, liquid diffraction
gratings, and zone plates). The use of liquid optical elements, by itself, is not a new
concept. One can cite studies of large-area (many square meters) planar liquid mirrors for
laser power plants [1], development of rotating 2.5-m diameter parabolic mirrors for
telescopes [2] (see also Ref. 3 for an earlier version of 1.5-m diameter mirror), quasistatic
liquid mirrors controlled by j×B forces [4,5], and optical elements made of “ferromagnetic
fluids” [6,7].

What we are proposing is entirely different. We propose a new class of centimeter-
size renewable optical elements consisting in most cases of thin liquid films over porous
substrates, which can be used in rep-rate mode.   The principal features associated with
these optics are: 1) between two successive pulses the optical elements can be created anew;
2) the film thickness is in the range from a few microns to a hundred of microns and the
film’s behavior is strongly affected by capillary forces; 3) our optical elements, in most
cases, can be arbitrarily oriented with respect to the gravitational force; 4) we use
electrostatic and capillary forces to control the shape of the surface of the film.

To designate this new class of optics we will use the acronym “CAMEL”
(“CApillary-Magneto-ELectrostatic”). Although in most cases we consider optical elements
for short-pulse rep-rate sources, our results describing the magneto-electrostatic control of
the shape of the surface have broader applicability and can be used in conjunction with
development of low-fluence long-lasting optics (e.g., adaptive optics).

The word “capillary” is used in this paper in two senses. First, we use it as a noun,
to designate a thin channel in a solid material.  Second, following a long tradition, e.g.
[8,9], we use it as an adjective, to designate short-wavelength perturbations on the free
surface of the fluid (“capillary waves”). The restoring force for this type of waves is
provided by surface tension sometimes called a “capillary force,” whence the “capillary
waves.”

We believe the CAMEL optics provide qualitatively new and important features that
will prove to become the enabling technology for a broad variety of applications. many of
which are difficult for us to foresee at this time.  In the near-term, most important CAMEL
optics applications will probably be in the area of x-ray optics for ultra-intense x-ray free
electron lasers (the needs of the proposed LCLS facility [10] initially stimulated us to
consider pulse-to-pulse renewable capillary diffraction gratings and gave rise to the first
steps in the analysis of the CAMEL concept).

A significant advantage of CAMEL optics for rep-rate applications is that the
parameters of the optical system can be monitored and changed between two successive
pulses at a frequency of ~ 10 Hz.

Although there exists a large variety of liquids suitable for the CAMEL optics, we
will make all the numerical estimates only for one liquid, namely mercury, because its
parameters are easily available from the literature. In the future work we will assess the
perspectives of other liquids. Parameters of the mercury required for our further discussion
are listed in Table 1. In cases where we discuss dielectric fluids we assume that their
dielectric constant is not much greater than 1, ε-1~1.

In all the general equations we use the CGS system of units; in “practical” estimates
we use mixed units specified in each particular case.



TABLE 1. Room temperature parameters for mercury

Density ρ=13.6 g/cm3

Kinematic viscosity ν=1.2⋅10-3
 cm2/s

Electrical conductivity σ=2⋅1016 s-1

Magnetic diffusivity Dm=3.5⋅103
 cm2/s

Thermal diffusivity χ=2.7⋅10-2
 cm2/s

Surface tension α=500 erg/cm2

Thermal capacity cp=1.9⋅107 erg/cm3K
Sound speed S=1.5⋅105 cm/s

Volumetric thermal expansion
coefficient

β=1.8⋅10-4 K-1

2. Properties of capillary waves.

There exist numerous studies on the theory of capillary waves, summarized in
Refs. [8, 9] and many others. For the purpose of our study we need, however, a
somewhat “non-traditional” slice of this theory, which cannot be found in one single
publication. Therefore, we believe that this introductory chapter will be in place here. In all
the numerical examples we will consider the mercury.

2.1 Ideal fluid

Consider a layer of a liquid resting on a planar underlying surface (Fig. 1). The dispersion
relation for a small-amplitude wave propagating over this surface is [9]:
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The first term in the bracket in Eq. (2.1) describes a contribution of gravity to the restoring
force; the second term describes the contribution of surface tension.  These two terms
become equal to each other at k=k*, where
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For mercury, this critical wave number is  k*≈5 cm-1 and corresponds to the wavelength of
1.2 cm.

Fig. 2a depicts dispersion curves for mercury film of various depths; Fig. 2b
depicts dispersion relation presented in the dimensionless form, with ω measured in units

of (h/g)1/2, and k measured in units of 1/h  ( ƒ /ω ω= h g, ƒk kh= ). In these units the
dispersion relation (2.1) reads:
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For short wavelengths, kh>1, the perturbation is localized near the free surface, and
decays exponentially with the distance from the surface, with the e-folding length being
1/k. The dispersion relation for such perturbations reads as:
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For these short waves, parallel and perpendicular (to the surface) displacements of liquid
elements are of the same order of magnitude.
 Long-wavelength perturbations, with kh<1, occupy the whole layer. The parallel to
the surface displacements of liquid elements (ξ||) are in this case much greater than

perpendicular displacements (ξz). These displacements are:
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where δh is the amplitude of the vertical displacement of the surface. The parallel
component is independent of z (up to higher-order corrections in the parameter  kh). As is
clear from Eq.(2.4), ξ||~δh/kh>>δh. The dispersion relation for long-wavelength (kh<1)
perturbations is
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The dispersion relation (2.1) describes also gravitational instability of the liquid film
turned “upside down” so that the substrate is now at the top. Dispersion relation in this case
can be formally obtained from (2.1) by reversing the sign of g,
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Perturbations are stable (ω real) for short-enough wavelengths, k>k*.
Compressibility of the fluid is unimportant, because the phase velocity is typically

much smaller than the sound velocity S. Indeed, for the mercury the phase velocity,
α ρk / , becomes formally greater than S only for unrealistically large k, k>5⋅108 cm-1.

2.2 Viscous effects

Viscosity causes damping of stable perturbations. It cannot stabilize unstable
perturbations with (k<k*) in the case of inverted geometry but, in some cases, can reduce
their growth rate.
In the case of short wavelengths, kh>1, the damping rate Imω is equal to:

Imω ν= −2 2k     (2.7)
For long wavelengths, kh<1, the damping rate depends on the parameter ωτ, where τ is a
characteristic time for viscous shear flow to propagate over the film thickness h,

τ
ν
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    (2.8)

For a mercury  film with h=25 µm, one has τ=5.2⋅10-3 s.

We will need the damping rate only for the case of small ωτ. In this domain,

perturbations become essentially aperiodic, with Imω>>Reω, and
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(see Ref. [11] and references therein). For the inverted configuration, and wavelengths
with k<k*, the system is unstable, with the growth rate being, roughly speaking,

Imω
ν

≈ h k g3 2

3
  (2.10)

3. Creating a planar renewable mirror by pressing a liquid through a porous
substrate.

3.1 General approach

Fig. 3 shows a concept of creating a planar renewable mirror with an upside-down
orientation. A planar, arbitrarily oriented mirror is a very important element of the optical
system because it allows one to produce an arbitrary transformation of the light beam with
the other liquid optical elements having a “normal” orientation (Fig. 4). The liquid film in
Fig. 3 is formed by pressing a working fluid through a porous substrate by a piston.
Before the gravitational instability has developed, the piston sucks the liquid back, and the
cycle repeats. To be specific, we assume that the substrate is made of fused capillaries of
the same radius rcap. Other porous substrates are conceivable, but we leave their analysis
for the further work. In real life, it may be more convenient to push and pull the liquid not
by a piston, but by a flexible membrane driven by actuators situated behind it. In our
conceptual discussion, we, however, will talk solely about a piston.

We suggest using non-wettable substrate. This will probably allow a complete
removal of the liquid from the outer side of the system during the “in” move of the piston.
For the wettable substrate, one can expect that droplets will stick to the areas between the
holes of the capillaries. A mechanical barrier (a rim) in Fig. 3 of the height  approximately
equal to the film thickness could be used to prevent the film from spreading laterally. A
wettable substrate (with non-wettable rim) is also conceivable. It is difficult to make the
final choice without some experimentation.

Let’s consider one cycle of the motion of the piston, starting on from the position
where the liquid film is present on the outer surface of the porous substrate. The piston
begins moving away from the substrate and, by the end of a half-cycle, “sucks” the liquid
out of the capillaries into the volume behind the substrate (Fig. 3). On the reverse motion,
the piston presses the fluid through the capillaries and creates a liquid film with a high-
quality reflecting surface. In other words, we assume that the stroke of the piston is equal
to the thickness b of the substrate (plus the film thickness, which is usually negligible
compared to b). In principle, it may suffice to have a stroke as small as a few thicknesses
(h) of the liquid film. We, however, will discuss a more difficult in realization case of a
larger stroke. This larger stroke may be necessary if one wants to extract all the working
fluid from the capillaries during every cycle. A continuing lateral flow of the working fluid
through a plenum behind the substrate (1 in Fig. 3) could then be organized to gradually
refresh it.  A cleaning  system could be introduced in this contour.

3.2 Deformations of the substrate

Obviously, to provide a smoothest possible surface of the mirror, the radius of
capillaries, rcap, should be made as small as possible. On the other hand, the pressure
required to push the fluid through capillaries, ∆p, increases as 1/rcap:
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= 2α
 .     (3.1)

For wettable materials one would have to apply a negative ∆p  to suck the liquid out of the
capillary. When making the estimate (3.1), we considered perfectly non-wettable or
perfectly wettable material, with the contact angle being either 180o or 0o. The pressure ∆p
applied to the substrate causes its deformation, which we will evaluate in this sub-section.

For the mercury,

∆p atm
r mcap
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We do not want to make ∆p too large, to avoid too strong deformation of the substrate; this
pushes us in the direction of the larger radii rcap. For the numerical example we choose rcap

=5 µm. According to Eq. (3.1), this corresponds to the pressure of 2 atm.

The maximum displacement ∆b of the substrate occurs in its center. Displacement
amplitude is [12]:
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where R is the mirror radius, E is the Young’s modulus, and µ is the Poisson coefficient of

the substrate. To make an upper-bound estimate of ∆b, we assume that E is 10 times less

than the Young’s modulus for the steel, i.e., we take E=2⋅1010 n/m2. With regard to µ, we
take a value of 0.3, typical for many materials. Assuming, as before, that R=0.5 cm, and
b=0.1 cm, we find that  ∆b  ~ 1 µm, the value that looks acceptable.

The characteristic frequency of the lowest mode of elastic vibrations of the substrate
is

ω
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~
b E

R

2

4 ,     (3.4)

where ρ is the substrate density. Taking ρ=2 g/cm3, and the other parameters as before,
one finds that the resonant frequency is ~105 s-1, orders of magnitude higher than the
frequency of the piston motion. This justifies using a steady-state approximation in
evaluating ∆b.  

Rough estimates of displacement and of the lowest eigenfrequency for a rectangular

membrane can be obtained by replacing R in Eqs. (3.3) and (3.4) by 2 21
2

2
2 1 2

L L− − −
+( ) /

,

where L1 and L2 are the lengths of the sides of the rectangle.
An additional force on the membrane will appear because of the viscous friction of

the working fluid against the walls of the capillaries. We assume that liquid inside
capillaries performs a vertical sinusoidal motion with the period tpiston and the amplitude b/2
( the distance between the upper and the lower position of the surface is then equal to the
thickness of the substrate). This motion is driven by the piston. The amplitude of the
viscous friction force between the walls and the liquid can be estimated as
2 2 2π νρb tpiston/ . The number of capillaries per unit surface area of the substrate is

η π/ rcap
2 , where η  (~1) is a filling factor by which we mean the ratio of the area occupied

by the holes to the total area of the substrate. Multiplying the two quantities, one finds
additional pressure required to press the fluid through capillaries:
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For mercury, and η=0.5, rcap=5 µm, b= 1mm, and tpist=0.1s one finds that ∆pvisc~0.035
atm and can be neglected compared to the pressure perturbation (3.2).

Two caveats are in order here. First, the real motion of the piston will probably be
not a pure sinusoid. It  might be worth adding a “plateau”  on the dependence of the piston
position vs time around the point where the thickness of the fluid film has reached a desired
value. This would eliminate any unnecessary motions that could distort the surface of the
film around the time when the optical pulse arrives. For the period of 0.1 s this plateau
could probably be 0.02 s long. However, the presence of this relatively short plateau will
have no significant effect on the estimate of the force (3.5). The second caveat is related to
the fact that, when making estimate (3.5), we have implicitly assumed that the fluid flow in
the capillary is a pure Poiseuille flow. In fact, the presence of the free surface of the fluid
leads to a more complex 2D flow near the surface. We neglect this subtlety in our estimates
because of a very large b/rcap ratio.

3.3 The waviness of the reflecting surface.

The substrate is made of many capillaries closely packed together. As we assume
that the walls of the capillaries have a thickness of the order of rcap (η~1), the spatial scale
of the surface structures can be estimated as rcap.  When the fluid is pressed through the
capillaries, its surface gets rippled at this scale or, in other words, the ripples have a
characteristic wave number k~1/rcap. These ripples experience a rapid viscous damping
described by Eq. (2.7). For mercury and rcap= 5 µm one has Imω~104 s-1; in other words,
these perturbations damp away during a small fraction of the period. Generally speaking,
initial perturbations will have a broad spectrum where also longer wavelengths will be
present.  Specific details of the spectrum will be determined by possible larger-scale
correlations between positions of individual capillaries. These correlations will depend on
the manufacturing process and are unknown to us at this stage. One can only say that even
perturbations with spatial scales ~10rcap decay relatively quickly, within ~10-2 s.

A special class is formed by long-wave perturbations with k<k*  , which are
unstable for the upside-down orientation (See Sec. 2.1). The finite radius of the mirror
limits wave number of perturbations from below, by the value approximately equal to

kmin=1.5/R     (3.6)
(the exact numerical coefficient depends on the boundary conditions on the rim). For
mercury, and R=0.5 cm, the unstable mode is indeed present (kmin<k* ). However, it grows
very slowly because of the viscous effects. Indeed, Eq. (2.10) shows that for a 25 µm

thick mercury film, and k=3 cm-1, the growth rate is 6⋅10-2 s-1. The corresponding e-
folding time is 15s, much longer than the period of the piston motion. For a rectangular
mirror with the lengths of the sides equal to L1 and L2, under the assumption that
displacement is zero on the boundaries, the minimum wave number is

k
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 Although the instability by itself is not a big problem (because of its small growth
rate), the absence of the restoring force for the perturbations with k<k*  means that at the
large scales the film must be perfect during the whole time of its creation, with tilts or
bumps with a scale k<k*  being inadmissible. This means that the properties of the porous
substrate must be uniform to a high level of precision at these scales.  



As the long-wavelength instability is so slow, it is not a limiting factor in the
increase of the size of the mirror. The uniformity of the substrate at larger scales may pose
more serious problems.

Conversely, if one wants to have a mirror that would be stable for all perturbations,
and whose surface would experience restoring forces bringing the surface to an equilibrium
shape (thereby relaxing requirements to the quality of the substrate), one might want to
reduce its radius R  to the values below, roughly speaking, 1.5/k* (3 mm for mercury).
The problem is that the equilibrium shape for a small mirror will not be planar, but will be a
meniscus. One may apply a correction technique based on the use of electrostatic forces
(see Sec. 4) to produce a planar part around the center of the mirror (Fig. 5). Although we
haven’t made yet analysis of the other candidate fluids, it is possible that there exists fluids
with k* smaller than in case of mercury. This would allow one to increase the mirror radius
beyond 3 mm. We have yet to study whether electrostatic forces introduce new instabilities.

There exists a general question of what is the minimum possible level of deviations
of the mirror surface from planarity in the stable domain. This minimum possible level is
determined by thermal fluctuations. The spectral energy density Wk of thermal fluctuations
is defined by the equation:

dW W dk dkx y= k     (3.8)
where dW is the energy of surface oscillations in the interval of wave numbers dkx, dky per
unit surface area of the plane. For thermal fluctuations, one has

W
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(the Rayleigh-Jeans distribution, with T being the temperature of the film). On the other
hand, Wk is related to the spectral density of surface displacements (ξ2)k  via equation:
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(we have used dispersion relation (2.1)). Equations (3.9)-(3.10) then yield the following
expression for the contribution dξ2 of the interval dkx, dky  to the mean-square deviation of
the surface from the plane:
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Remarkably, this result coincides with the previously derived expression for dξ2  for the
fluid of an infinite depth [13]. For capillary waves (i.e., the waves with k>k* , Eq. (2.2)),
one obtains:

d
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We have taken into account that dkxdky=2πkdk. The contribution to the surface roughness
from the wave numbers whose absolute values lie between k1 and k2 is:
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The longer wavelengths, k<k*, give smaller contribution. One sees that for a rough
estimate of the r.m.s. value for deviations from planarity one can use an equation

ξ
πα

2 5
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≈ T
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where we have replaced the logarithmic factor by its typical numerical value ~ 5. For

mercury at the temperature ~4.5⋅10-14 erg (300 0K), one has ξ 2 ~1 Å. This determines

the minimum possible surface roughness. As was pointed out in Ref. [13], the actual
roughness may be somewhat larger than (3.13) because of the finite size of atoms (or
molecules) forming the fluid.

3.4 The role of vibrations.

High-precision optical elements installed on an experimental facility usually
experience some level of vibrations originating from external sources. There is an issue of
possible misalignment caused by these vibrations. For the optical systems a great
experience has been accumulated in dealing with this problem. In this sense, solid elements
of the system discussed above (e.g., substrates) do not create any specific new problems.
A question may arise, though, on how vibrations could affect liquid surfaces.

Typical frequencies of vibrations, ωvibr, lie in the range below 300 s-1. They are
below the eigenfrequencies of the substrate (Eq. (3.4)). We therefore assume that the
substrate moves as a perfectly rigid body.  This motion can be represented as a
superposition of translational motion and tilts.  

We first consider translations. We characterize them by a displacement vector ξ(t).
The translational acceleration d2ξ/dt2 can be represented as a sum of the tangential and
normal acceleration. The normal acceleration does not change the shape of a planar surface
of the mirror. So, we consider tangential acceleration. It causes a fluid flow along the
surface of the mirror and leads thereby to tilting of the liquid surface. For relatively low
frequencies mentioned above and thin-enough films, the condition ωvibrτ<1 holds (where τ
is defined as in (2.8)), meaning that the tangential velocity is a linear function of the
distance from the substrate surface (Couette flow), with the average (over the film
thickness) velocity equal to

v t= τξ««

2
,   (3.15)

where by ξ t we mean only tangential component of the displacement. This flow causes
increase of the depth on one side of the mirror and decrease on the other side. The estimate
for the relative displacement ∆h of the fluid surface at two opposite sides of the disk then
follows,

∆ ∆h
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R
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ω ξτ ωvibr
vibr
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where ∆t is a time interval during which thin film exists at the outer surface of the substrate

(0.03 s in the example given in Sec. 3.2). We deliberately overestimate ∆h by writing ξ
instead of ξt.

The tilt of the surface of the film relative to the substrate is ∆h/R. In order to be

unimportant, it must be less than the tilt of the substrate itself, θ. The latter is related to the

displacement by θ~ξ/L, where L is the size of the structural element of the facility to which
the mirror system is attached, or the wavelength of vibrations in this element, if the latter is
shorter. In this way we arrive at the following criterion for unimportance of specifically
“fluid” effects in vibrations:
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As we have already mentioned, for thin-enough films, one has ωvibrτ<1. This means that
condition (3.17) is certainly satisfied if hL<R2; for our standard set of parameters, R=0.5
cm, h=25 µm, this latter inequality holds if L<100 cm.

The normal component of the acceleration does not affect the planar surface of the
liquid film but it may affect the curved surface of the type we discuss in the next section.
We will not present here the corresponding simple analysis. It is also worth noting that tilts
of the substrate cause smaller tilt of the liquid surface relative to substrate than tangential
accelerations we have just discussed. We leave further details for the future reports.

3.5 Maximum intensity of the laser pulse.

There are two limitations on the intensity of the laser pulse that can still be handled
by the proposed system without damaging its permanent components. The first is decrease
of the reflectivity during the laser pulse itself (because of, e.g., bringing the surface to a
boil temperature during the pulse). The second is possible damage to the substrate by
mechanical and thermal perturbations initially produced near the surface of the liquid and
then propagating towards the substrate. The first constraint is not specific to our concept.
There exist numerous studies of that issue. We therefore discuss only the second
constraint, limiting ourselves to a qualitative discussion. We consider a 1-dimensional
problem, assuming that the spot size on the surface of the film is greater than the film
thickness.

There are two characteristic times important in the problem, the sound propagation
time through the film, h/S (where S is the sound velocity), and the time of a thermal
diffusion, h2/χ (where χ is thermal diffusivity).  For a 25 µm-thick mercury film, the

acoustic time is ~ 2⋅10-8 s, and the thermal conduction time is 2⋅10-4 s.
The characteristic pulse-width of the x-ray pulse in the LCLS project is in the range

of 200-300 fs. As the laser pulse is shorter than the acoustic time, the pressure perturbation
created near the surface, propagates as an acoustic pulse (which may become a shock
wave, if the amplitude is large enough). The energy deposition occurs at a depth ∆h ~ 0.3

µm in mercury (this is determined by photo-absorption of x rays and subsequent energy
transport by keV-range electrons). The liquid within this layer is heated up to some
temperature ∆T virtually instantaneously (compared both to the sound propagation time and

the heat conduction time over ∆h). The resulting pressure perturbation ∆p then drives an
acoustic pulse propagating towards the substrate. It may form a weak shock by the familiar
overtaking process [9]. The shock is formed if the condition

∆ ∆
p S

h

h
> ρ 2   (3.18)

holds. By noting that the pressure perturbation in the isochoric heating can be evaluated as
∆ ∆p S T0

2~ ρ β    (3.19)

(where β is volumetric thermal expansion coefficient), one finds that the shock is formed if

∆ ∆
T

h

h
>

β
  (3.20)

For mercury in the aforementioned example, the shock is formed if ∆T>50 K. This

corresponds to the deposited energy Cp∆h∆T>3 mJ/cm2.



If the shock is indeed formed, it weakens during its propagation through the film
[9]; the pressure jump at the distance h from the surface decreases to
∆ ∆ ∆ ∆p S p h h p~ /ρ 0 0< . For the energy deposition in the range of the critical value of 3
mJ/cm2, the expected pressure amplitude will be in the range of 3 Kbar, somewhat below
the yield strength of good structural materials. Of some concern may be behavior of the
shock near the edges of the capillaries where the energy concentration may occur as a result
of reverberations. To answer this question, experiments or 3D numerical simulations may
be needed.

For longer-pulse, higher energy-per-pulse lasers, the favorable regimes of
operation are those where the pulse width is larger than the sound propagation time h/S, so
that thermal stresses in the heated surface layers increase adiabatically slowly, and do not
lead to shock formation. They just cause a quasi-equilibrium thermal expansion of the
heated layer, with only small pressure increase in the bulk of the film. If the pulse is shorter
than h/S, it is at least desirable to make it longer than ∆h/S.  The pressure perturbation in
the pressure pulse that will be propagating towards the substrate will then be much less
than Eq. (3.19).

4. Electrostatically controlled mirrors

4.1 Mirror focal length

Another CAMEL configuration would be a parabolic mirror in a thin layer of a
liquid, with a substrate being a flat conducting plate. A ring electrode of a radius R will be
situated at some distance (~R)  over the surface. Electric field will distort the surface of the
fluid, with the region near the axis forming a parabolic mirror (Fig. 6). If a thin ring is
situated at a distance a  from the surface of the plate, the electric field at the planar surface
of the conducting fluid (kept at the ground potential) is determined by the equation

E r
URa d

a R Rr r
z( )

cos
/=

+ − +( )∫2

22 2 2 3 2
0

Λ
ϕ

ϕ

π
        (4.1)

where U is the ring potential, and Λ is a logarithmic factor depending on the (small)

thickness d of the ring {Λ≈ln[2min(a, R)/d]}; r is the distance from the axis of symmetry.
Under the action of the ponderomotive force, the surface becomes perturbed. However,
these perturbations are small (at least for the mirrors with the focal distance much greater
than the mirror radius). We will neglect these small corrections when evaluating Ez. If there
is a need to refresh the fluid between the two subsequent pulses, one can use a conducting,
porous substrate.

For large-focal-length mirrors deviations of the surface from planarity are small,
∆h<<R, and one can use the linear equation to find ∆h :
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8
    (4.2)

We will study its solution near the axis, at small r. In this zone the ponderomotive force can
be presented as an expansion:
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We limit ourselves to the first three members. One has:
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If we are interested in not-too-small mirrors, with the size exceeding 1/k*, one can neglect
capillary forces and set the left hand side (l.h.s.) of Eq. (4.2) to zero. Then one obtains the
following expression for the function ∆h(r):
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If corrections related to the finite value of the capillary forces are required, one can find
them by substituting this solution to the l.h.s. of Eq. (4.2).  The ideal parabolic mirror
corresponds to all the terms beyond r2 being equal to zero. The focal length in the paraxial
domain, where the third and higher-order terms in the R.H.S. of (4.5) can be neglected, is

F
g a R

Ua R a
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( ) −( )
ρ

π

Λ2 2 2 5

2 2 23 3 2
          (4.6)

At given voltage U and radius R of the ring, the focal length varies as a function of
the distance a between the ring and the surface. At small a, the surface near the axis is
almost flat, and the focal length is infinite. It reaches a minimum at the distance a≈0.45R .
At the further increase of a, the surface near the axis again becomes flat  (at a=1.22R), and
then becomes convex, giving rise to a defocusing mirror. The minimum focal length for the
defocusing mirror is attained at a≈1.57R. Finally, at even larger a’s, the surface again
flattens.

At the distance a≈0.45R  corresponding to the minimum focal length, one has

 F F
g R

U
= ≡0

2 6

2
0 51. ρ Λ

    (4.7)

Eq. (4.7) shows that, with mercury as the working fluid, creating a mirror with a focal
length of 50 cm by a ring of the radius R=0.5 cm requires a modest voltage  ~ 1.5 kV (we
assumed Λ=3). With this voltage, the maximum value of ∆h (which is reached just under

the ring, at r≈R) is approximately 30 µm. This sets the minimum value of the initial

thickness of the liquid film, which must be greater than ~ 30 µm.
One advantage of this scheme is that it works not only for conducting but also for

dielectric fluid (for the latter, the result analogous to Eq. (4.5) will also depend on the
dielectric constant). Another advantage is related to a possibility of using several ring
electrodes segmented in the azimuthal direction, each with an independent voltage control.
By proper adjustment of the voltages applied to azimuthal segments, on can create an
approximately parabolic mirror with an axis tilted with respect to the normal to the surface.
This demonstrates one outstanding feature of the CAMEL concept: remote control of the
focal length and optical axis of a figured mirror, without introducing any mechanically
moving parts.

A relative disadvantage of this scheme is the presence of the electrodes in front of
the mirror. This limits the solid angle that can be used for collecting light. For dielectric
liquids, however, one can solve this problem by using a ring situated below the liquid film
and dielectric substrate, as shown in Fig. 7.



4.2 Characteristic time-scales for changing the shape of the mirror.

Consider a pool of liquid of the thickness h<<R.  If one wants to vary the focal
length and orientation of the optical axis by varying the voltages at different electrodes, one
has to evaluate the characteristic time τresponse within which the liquid will redistribute itself
over the surface of the substrate and settle down in the new equilibrium. For thin films,
viscous forces may be important and could slow down the response time. Basically, this
time is equal to the time of viscous damping of surface waves with the wave-number
k~1/R. For not too thick films, the damping rate is determined by Eq. (2.9), with the lst
term neglected (because we assume that k*R>1) According to the estimate (2.9), we have

τ ν
response

R

h g
~

2 2

3     (4.8)

For a mercury mirror with R=0.5 cm and h=30 µm, one finds τ response ~20 s. According to
Eq. (4.8), the response is faster for thicker mirrors. At some point, however, the response
time evaluated according to Eq. (4.8) becomes shorter than the viscous time (2.8), and
applicability conditions of Eq. (2.9) (or, equivalently, Eq. (4.8)) break down. The
maximum thickness at which one can still use Eq. (4.8) can be evaluated from the condition
τresponse~τ (with τ as in Eq. (2.8)), which yields:
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The corresponding response time is
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For the mercury mirror with R=0.5 cm, one has h=150 µm, and the corresponding shortest
response time ~0.2 s.

For the film thicker than the one evaluated from Eq. (4.9), the response will be
accompanied by excitation of the wave motion of the fluid. One could significantly reduce
the amplitude of transient waves by applying the voltage in an “adiabatically slow” fashion.
How much one can gain then in terms of the response time, will be analyzed in further
reports. Too thick films, on the other hand, may be too vulnerable to vibrations (see Sec.
3.4).

4.3 Liquid dielectric zone plate

By introducing a set of properly spaced rings underneath the surface of the
dielectric film, and charging them, one can produce a set of concentric bumps and dips on
the surface (Fig. 8), via the action of the ponderomotive force.  The width of each bump
(dip) should be equal to the width of the corresponding Fresnel zone. This will not be a
step-wise zone plate, because transitions between tops and bottoms of the surface structure
will be smooth, but it will work in a similar way, yielding a significant amplification of the
light intensity in the focal point.

For a normal incidence, the required height of the surface features is ∆h~λx/4,
where λx is the wavelength of the light. The width of the every zone is much larger: the scale
is  l~(λx F)1/2, where F is the focal length. The required electric field strength on the surface
of the film is determined by balancing the ponderomotive force, E2/8π, against the capillary
force, which scales as α∆h/l2, where α is the capillary constant. When writing the
ponderomotive force, we assume that the dielectric constant of the film, ε, is not very large,
~1. Equating the two forces, one obtains the following estimate for the required electric field



strength:E F2 8 4/ ~ /π α . Taking as a representative value of the capillary constant α~100
erg/cm2, and the focal distance F~100 cm, one finds that the required electric field strength is
~ 1 kV/cm. For visible light (λx ~0.5 µm) and the focal length 100 cm, the size of the first few
Fresnel zones is equal to ~0.7 mm. This sets the scale of the voltages required to create the
aforementioned electric field: ∆U~70 V. The thickness of the film should be of order of l/π
(in the aforementioned example this is ~ 200 micrometers).  

For X rays with the wavelength of 1.5 Å, one has to use grazing incidence
optics, with the incidence angle θ  (counted from the surface of the plate) being ~ 10 mrad or
less (otherwise, the reflectivity becomes prohibitively low). In this case, it is inefficient to use
circular zone plate. Instead, one can use a linear zone plate, providing a cylindrical focus. The
length of the plate will then be much greater than its width. For small θ,  the required
amplitude of  surface relief becomes  ∆h~λx/4θ and the width of the zones becomes
l~(λF)1/2/θ. For the focal length of 100 cm and θ=10-2, l is ~ 1 mm, and ∆h is ~40 Å. For the
film thickness ~ 300 µm,  the electric field required to produce this surface relief becomes ~
100 V/cm, with the voltage between neighboring wires (separated by the distance ~ 1mm) in
the range of 10 V.  It is assumed that the incident beam is broad enough so that the length of
its imprint ias at least a few times greater than l.

5. Capillary diffraction gratings

5.1 Using ferroelectric transducers

It is obvious that the surface of the liquid film, if rippled by a capillary wave, can
serve as a reflecting diffraction grating. It looks especially attractive for rep-rate systems
with high energy flux, which would require replacement of the grating after every pulse.
With the grating created anew on the surface of a liquid film (which is also replaced after
every pulse), one can operate at high rep-rates, determined by the time of replacement of
the film (up to ~ 100 Hz). The most obvious way of launching a capillary wave is using a
transducer (say, a ferroelectric transducer) situated at one side of the film and exciting a
capillary wave of a desired wavelength propagating towards the other edge.

Unfortunately, this technique does not work for short-enough grating periods,
below a few micrometers for mercury.  The problem is that short-wavelength capillary
waves damp very rapidly because of the viscous dissipation (Eq. (2.7)). For short
wavelengths, one can neglect the contribution of the gravitational force to the dispersion
relation (2.3). The group velocity of the capillary wave is then

vgroup
k= 3

2
α
ρ

    (5.1)

Dividing it by the damping rate Imω (Eq.2.7), one finds the e-folding length labs,

  
labs k

= 3
4 2 3

α
ρν

    (5.2)

For the wavelength of 10µm on the surface of mercury, the absorption length is a mere 60

µm, only 6 wavelengths. For shorter wavelengths this number decreases further.
Therefore, for a single transducer, it is difficult to create a “capillary grating” of a
reasonable length. One could consider a set of phased transducers separated by the distance
of, say, labs/2. But a long array required to produce a diffraction grid with, say, 104 periods
would be relatively more expensive than the system we describe below.



5.2 Using the electromagnetic drive

We suggest to generate a standing wave perturbation by J×B force. Consider an
array of thin parallel wires placed on the surface of the dielectric substrate (possibly in
precisely machined grooves), with the wires being in electric contact with mercury (Fig. 9).
We impose a constant magnetic field of B0~10 kG strength, oriented along the wires. Such
a field can be created by permanent magnets. A sinusoidal voltage will be applied between
the neighboring wires and will drive the current in mercury. Interaction of this current with
the external magnetic field will excite a capillary wave on the surface of the film. The
wavelength will obviously equal to the doubled inter-wire distance.  To be specific, we
consider the phasing that corresponds to a standing wave (although generation of the
traveling wave is also possible). To reduce the requirements to the current density, we
choose the frequency of the current to coincide with the frequency of the capillary wave
with the desired period (determined by the distances between the neighboring wires). The
creation of reflection gratings with 10 µm period will require a voltage frequency in the
range of 1 MHz.

We assume that the thickness of the film is not very much larger than 1/k;
otherwise, perturbations produced by the currents flowing near the bottom will be too
weakly coupled with surface perturbations. To be specific, we assume that the thickness is

h=A/k,     (5.3)

with the numerical coefficient A being equal 2-3.
The time for the magnetic diffusion over the thickness h,

τ magn
m

h

D
=

2

2
,     (5.4)

is quite short. For the mercury and h=5 µm it is less than 1 ns (see Table 1 for Dm); in other
words, the current is distributed resistively, and isn’t strongly localized near the substrate:
it flows over the whole thickness of the liquid film. If the current per unit length of the wire
is J, then the parallel to the surface component of the current density is j~J/h. The vertical
force acting per unit volume of the film can then be evaluated as

f
jB

cz ~ 0 ,     (5.5)

where B0  is the external magnetic field. Consider first the static case, where the inter-wire
voltage (and, accordingly, j) does not vary with time. This vertical force, integrated over
the film thickness, is then balanced by the surface tension, so that

f h kz ~ α ξ2 0,        (5.6)

where ξ0 is the surface deformation in the static case. From Eqs. (5.5) and (5.6) one finds
that
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,     (5.7)

where we have used Eq. (5.3).
To reduce requirements to the driving current, we will exploit the resonance

excitation, in other words, we will adjust the frequency of the current to be equal to the
eigenfrequency of the capillary wave with the wavelength determined by the period of the
exciting force (two inter-wire distances). For the sinusoidal dependence of the exciting
force over the time, one has:

«« « cosξ ν ξ ω ξ ω ξ ω+ + =4 2
0
2

0
2

0k t     (5.8)



The second term describes viscous damping (Eq. (2.7)). If the frequency ω  coincides with

the resonant frequencyω0, the amplitude of the surface oscillations can be evaluated as

ξ ξ ω
ν

≈ 0
0
24 1max( , / )k t∆

    (5.9)

Here we have taken into account that, in some cases, the duration ∆t  of the wave-train in
the wire array may be shorter than the inverse damping time. In particular, this may be the
case when the viscous damping is small.

For the 10 µm wavelength (k=6.28⋅103 cm-1) in mercury, one has ω0≈3⋅106 s-1,

and 4νk2≈ 1.8⋅105 s-1. Therefore, for a driving pulse duration ∆t exceeding 10-20 µs, the
amplitude of the surface perturbations will be ~15 times higher than the amplitude of static
perturbations ξ0.

Assume that the wave amplitude is approaching nonlinear state, with kξ~0.3 (or, in
other words, peak-to-valley distance equal to 0.1 of the wavelength), meaning that
ξ0~0.02/k~3⋅10-6 cm. Equation (5.7), with A=2.5, and B0=10 kG yields then the
following expression for the required current density: j~1014 CGS~30 kA/cm2. The
resulting magnetic field perturbation is ∆B ~ 10 G. The forces acting upon the fluid can be

evaluated in terms of the magnetic pressure perturbation, B0∆B/4π, which is in the range of
0.1 atm. It is small enough not to cause cavitation (in the regions where the pressure
perturbation is negative).

The grating can be considered as a “static” grating if the laser pulse length is
significantly shorter than the temporal period of the capillary waves. For lasers with pulse-
width less than a fraction of microsecond, this condition is satisfied with significant
margin. The driving pulse should be synchronized in such a way as to provide the
maximum amplitude of the surface perturbation at the time of the arrival of the laser pulse.

5.3 Heating of conductors and of the working fluid.

The thermal conduction time over the thickness of the film, τ~h2/2χ, is typically

shorter than the driving pulse length. For a mercury film 5 µm thick, τ is ~10-5 s,  less than
the expected duration of the driving pulse. Assuming the worst-case scenario of one-sided
cooling, from the side of the substrate, one concludes that the maximum temperature
increase will occur on the surface of the film and will be determined by the relationship:
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For mercury, and the current density and other parameters as at the end of previous section,
this yields a very modest temperature increase of 10-2  oK. On the other hand, for diffraction
gratings with periods considerably shorter than 10 µm, both the current density and the
temperature variation increase significantly, because of a strong dependence of the current
density on the wave number. Note also that at higher values of ∆T thermal expansion of the
liquid becomes substantial. This, on the one hand, may interfere with the dynamical effects
discussed above but, on the other hand, may provide an alternative way for modulating the
surface of the film. A more detailed analysis of all these effects is required to determine the
smallest achievable period of the grating.

Consider now heating of the wires. If the width of the grating is b, and the voltage
is applied at both ends of every wire, the current entering each wire from one side is
I~jbh/2. Taking j~30 kA/cm2, b~1mm, and h=5 µm, one finds that I~1 A. For a wire made



of silver, with the resistivity of 1.62 µOhm⋅cm, and the thermal diffusivity ~4.53
W/cm0K, the heating during the driving pulse is in the range of 10 0K.

Limitations on the intensity of the incident laser radiation are two-fold: reflective
properties of the film should not deteriorate significantly during the laser pulse; mechanical
perturbations created in the film by the heating of the surface layer during the  pulse should
not damage the substrate with embedded wires (see Sec. 3 for discussion of both issues).

5.4 Grazing incidence gratings

Grazing incidence gratings, likely to be used in x-ray optics, allow one to reduce
requirements to the amplitude of the surface wave. We consider the case where the grating
period λ is much longer than the wavelength λx of x rays,

λx<< λ   (5.11)

We measure the incidence angle θ<< 1 from the film surface (not from the normal to the
surface). One can show that, under condition (5.11), in order to have the first-order
maximum shifted from the zeroth-order maximum by an angle comparable to the incidence
angle and, at the same time, have a significant suppression of higher-order maximums, one
has to fulfil two conditions,

θλ πξ~ 2 ,   (5.12)
and

2πξθ λ~ x,   (5.13)

where ξ is the amplitude of the surface wave (see Sec. 6.2). For the given λx and λ these
two conditions then yield the following results for the optimum incidence angle and
required amplitude of surface perturbations:

θ λ
λ

~ x ,   (5.14)

and 

ξ
λλ
π

~ x

2
.   (5.15)

Taking as an example λ ~ 3 µm, and λx ~1.5 Å, one finds θ~10 mrad, and ξ~3⋅10-7 cm.

This amplitude, if normalized to λ , is significantly smaller than the one considered in
numerical examples of Sec. 5.2. This, in turn, means that one can drive a smaller current
and avoid problems with the film heating. Note that the intrinsic surface roughness
evaluated in Sec. 3.3 is still much smaller than the required amplitude (5.15).

5.5 Using dielectric liquids

One can create diffraction grating based on dielectric liquids. This can be done in
the same way as discussed in Sec. 4.3 in conjunction with dielectric zone plates. As
dielectric liquids are generally rather poor reflectors for the normal incidence, one will have
to use them in the grazing incidence mode described in the previous section. For the grating
period λ∼ 3µm and the wavelength of x rays λx ~1.5 Å, the amplitude of the surface

modulation, as mentioned in the previous section, should be ξ0~30 Å. For a liquid with not

very large dielectric constant, ε-1~1, creating such perturbations would require a
periodically varying electric field whose strength near the surface can be determined from
the following equation:

αξ π λ π0
2 22 8/ ~ /( ) E   (5.16)



For α~100 erg/cm2 typical for dielectric liquids, and the other parameters as specified
above, one finds that the required electric field strength is ~ 105 V/cm. This is beyond the
breakdown field for liquid dielectrics. Therefore, one may have to resort to a resonant
excitation of surface waves, as described in Sec. 6.2. This would bring the required electric
field strength to a more comfortable level of 104 V/cm. Note that the potential difference
between the wires is quite small (because of small spatial scales involved), in the range of
10V.

6. Summary

This paper describes several elements of reflecting optics based on the use of thin
liquid films. The shape of the free surface of the mirrors is controlled by capillary forces
and magneto-electrostatic forces (whence the acronym “CAMEL”=”Capillary-Magneto-
Electrostatic” introduced in Sec. 1).  In the rep-rate mode, one can replace the film material
in every pulse. This would allow one to keep the surface clean and initially cold even at
high energy densities during each laser pulse. We have pointed out at the possibility of
using planar liquid-film mirrors in the “upside-down” orientation, with the viscous
inhibition of the gravitational instability. The film material will be renewed within the time
short compared to the instability e-folding time. Reflecting diffraction gratings can be
created by perturbing the film surface by the J×B force generated by an array of embedded
fine wires. Gratings on the surface of dielectric liquids can be produced by electrostatic
forces created by submerged conductors. Parabolic mirrors and reflecting zone plates can
be created both electrostatically and electromagnetically. A focal length and the direction of
the optical axis of the parabolic mirror can be changed by controlling voltages on the
segmented electrodes, without any need for introducing mechanical actuators.

For rep-rate applications, an important element of the CAMEL optics is a porous
substrate (perhaps, made of fused capillaries): a thin liquid layer is created over the
substrate and then removed by pressing the fluid in and out through the capillaries. We
have evaluated deformations of the substrate during this process. We have also discussed
effect of vibrations of the mechanical structure on the distortions of the film surface and
have derived conditions where vibrations are unimportant. Joule heating has been evaluated
for the cases where it may be potentially important. All in all, we have presented a set of
equations which could serve as a starting point for a more detailed analysis of the proposed
system.

Potential applications of the CAMEL optics are numerous and include high-power
lasers in various spectral ranges (from infrared to X-ray), as well as low-intensity adaptive
optics systems.

Next steps in developing the CAMEL optics should include systematization of the
information about possible working fluids and substrates. Among the parameters that
should be screened, in addition to those listed in Table 1, there should the following ones:

1. Saturated vapor pressure over the surface.
2. Reflectivity for various wavelengths and incidence angles.
3. Cost per gram.
4. Contact angles for various substrates.
5. Products of decomposition of the film by intense laser pulse (for non-elemental working
fluids).

A key issue in the experimental tests of the concept is a quality of a liquid surface
produced by pressing a working fluid through the porous substrate. There is no doubt that
thick-enough films with a flat surface can be produced. What has to be determined
experimentally, is the minimum attainable film thickness (at a good surface quality). The



answer may depend on the cleanness of the substrate and its macroscopic uniformity.
Direct experiments are required to address this issue.
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 Figure captions

Fig. 1 Liquid film over solid substrate. The substrate is shaded. The surface of the film is rippled
at a wavelength λ≡2πD≡2π/k. Dashed line represents unperturbed surface of the film; δh s
the amplitude of the surface perturbation.

Fig. 2 Dispersion properties of surface waves in the setting of Fig. 1. a) Dispersion curves for
the mercury; curves, from the lower to the upper one, correspond to film thickness of 3,
30, and 100 µm, respectively; the dots show the points where the condition ωτ=1 is

satisfied, where τ is defined by Eq. (2.8); dashed vertical line is the line where k=k* ; b)
Dispersion curves for an arbitrary fluid in the dimensionless variables; curves, from the
lower to the upper, correspond to the parameter k*h equal to 10-1, 10-2, and 10-3,
respectively.

Fig. 3 Creating a thin film in the upside-down geometry: 1 – working fluid; 2 – porous substrate;
3 – liquid film; 4 – rim.

Fig.4 An example of the CAMEL-type optical system with one planar mirror oriented “upside
down” and a focusing mirror  having a “normal” orientation.

Fig. 5 Making a quasi-planar mirror by introducing correcting electrostatic forces. In the case
shown, electric field is created between the correcting electrode 1 and the liquid mirror; 2–
supporting structure (its bottom can be made of a porous material). The solid line depicts
initial surface of the meniscus; the dashed line shows a corrected surface, after the voltage
is applied; this surface is nearly planar near the axis.

Fig. 6 Creating a focusing mirror by introducing electrostatic field between the liquid and the
ring. More sophisticated set of electrodes can be used, including electrodes segmented in
the azimuthal direction.

Fig.7 Creating a mirror in a dielectric liquid. Liquid dielectric with a dielectric constant ε1 is

situated above the solid substrate with a dielectric constant ε2. The unperturbed surface of
the liquid is shown by a dashed line.  After voltage is applied to a ring electrode of a radius
R, the surface becomes distorted and, near the axis, acquires the shape of a focusing
mirror. The second electrode is situated far from the ring.

Fig. 8 a) Creating a reflecting zone plate on the surface of a dielectric liquid by embedded circular
electrodes (shown in dashed lines); the voltage is supplied via vertical conductors (thick
lines); the dielectric is shown as a transparent medium; b) Creating a reflecting zone plate
on the surface of a conducting liquid (transparent layer over the substrate) by driving a
current between the immersed circular electrodes; the external vertical current creates an
azimuthal magnetic field that allows one to keep the current between the circular electrodes
at a modest level (a hole through which the vertical current crosses the zone plate is not
shown). Current is supplied via vertical conductors shown in thick lines.

Fig. 9 Generating a diffracting grating on the surface of the conducting fluid by driving a current
between oppositely charged wires of a planar wire array.
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